Activation of CaMKII and ERK1/2 contributes to the time-dependent potentiation of Ca2+ response elicited by repeated application of capsaicin in rat DRG neurons.

نویسندگان

  • Xiulin Zhang
  • Stephanie L Daugherty
  • William C de Groat
چکیده

When capsaicin is applied repeatedly to dorsal root ganglion (DRG) neurons for brief periods (10-15 s) at short intervals (5-10 min), the evoked responses rapidly decline, a phenomenon termed tachyphylaxis. In addition to this phenomenon, the present study using Ca(2+) imaging revealed that repeated application of capsaicin to rat dissociated DRG neurons at longer intervals (20-40 min) or during multiple applications at short intervals elicited an enhancement of the responses, termed potentiation. The potentiation occurred in 50-60% of the capsaicin-responsive cells, on average representing a 20- to 30% increase in the peak amplitude of the Ca(2+) signal, and was maximal at a 40-min application interval. An analysis of the mechanisms underlying potentiation revealed that it was suppressed by block of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) with 5 μM KN-93 or block of the activation of extracellular signal-regulated kinase (ERK) 1/2 with 2 μM U-0126. Lowering the extracellular Ca(2+) concentration from 2 to 1 mM or pretreatment with deltamethrin (1 μM), which blocks calcineurin and tachyphylaxis, enhanced potentiation. Potentiation was not affected by: 1) inhibition of protein kinase C or protein kinase A, 2) block of the three subtypes of neurokinin receptors, or 3) block of the trafficking of transient receptor potential V1 channel to the membrane. These results indicate that the potentiation is a slowly developing Ca(2+)-modulated process that is mediated by a complex intracellular signaling pathway involving activation of CaMKII and ERK1/2. Potentiation may be an important peripheral autosensitization mechanism that occurs independently of the pronociceptive effects of inflammatory mediators and neurotrophic factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of CaMKII and ERK1/2 contributes to the time-dependent potentiation of Ca response elicited by repeated application of capsaicin in rat DRG neurons

Zhang X, Daugherty SL, de Groat WC. Activation of CaMKII and ERK1/2 contributes to the time-dependent potentiation of Ca response elicited by repeated application of capsaicin in rat DRG neurons. Am J Physiol Regul Integr Comp Physiol 300: R644–R654, 2011. First published December 22, 2010; doi:10.1152/ajpregu.00672.2010.—When capsaicin is applied repeatedly to dorsal root ganglion (DRG) neuron...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

Acute sensitization by NGF of the response of small-diameter sensory neurons to capsaicin.

We investigated acute sensitization by nerve growth factor (NGF) of the response of small-diameter (<30 microm) dissociated dorsal root ganglion (DRG) cells to brief repeated puffs of capsaicin as a model for thermal hyperalgesia induced by NGF. We have previously shown that placing NGF in the bath after an initial puff of capsaicin can completely overcome the tachyphylaxis normally observed in...

متن کامل

Role of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat

Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...

متن کامل

Involvement of lysophosphatidic acid in bone cancer pain by potentiation of TRPV1 via PKCϵ pathway in dorsal root ganglion neurons

BACKGROUND It has been demonstrated that lysophosphatidic acid (LPA) released from injury tissue and transient receptor potential vanilloid 1 (TRPV1) receptor are implicated in the induction of chronic pain. In the present study we examined whether an interaction between LPA receptor LPA(1) and TRPV1 in dorsal root ganglion (DRG) neurons contributes to the development of bone cancer pain. RES...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 300 3  شماره 

صفحات  -

تاریخ انتشار 2011